Two Doyen-Wilson theorems for maximum packings with triples

نویسندگان

  • Hung-Lin Fu
  • Charles C. Lindner
  • Christopher A. Rodger
چکیده

In this paper we complete the work begun by Mendelsohn and Rosa and by Hartman, finding necessary and sufficient conditions for a maximum packing with triples of order m MPT(m) to be embedded in an MPT(n). We also characterize when it is possible to embed an MPT(m) with leave LI in an MPT(n) with leave L2 in such a way that L1 C L2.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Doyen-Wilson theorem for maximum packings of Kn with 4-cycles

Necessary and sufficient conditions are given to embed a maximum packing of K,, with 4-cycles into a maximum packing of K, with 4-cycles, both when the leave of the given packing is preserved, and when the leave of the given packing is not necessarily preserved.

متن کامل

The Doyen Wilson Theorem for Minimum Coverings with Triples

In this article necessary and sufficient conditions are found for aminimum covering ofKm with triples to be embedded in a minimum covering ofKn with triples. c © 1997 JohnWiley & Sons, Inc. J Combin Designs 5: 341–352, 1997

متن کامل

Embeddings of Simple Maximum Packings of triples with 2 Even

Let MPT (v, 2) denote a maximum packing of triples of order v and index 2. An MPT (v, 2) is called simple if it contains no repeated triples. It is proved in this paper that for v > 2 and any even 2, the necessary and sufficient condition for the embedding of a simple MPT(v,2) in a simple MPT(u,).) is u >/2v + 1.

متن کامل

The number of edge-disjoint transitive triples in a tournament

We prove that a tournament with n vertices has more than 0.13n(1 + o(1)) edge-disjoint transitive triples. We also prove some results on the existence of large packings of k-vertex transitive tournaments in an n-vertex tournament. Our proofs combine probabilistic arguments and some powerful packing results due to Wilson and to Frankl and Rödl.

متن کامل

Upper Bounds for Packings of Spheres of Several Radii

We give theorems that can be used to upper bound the densities of packings of different spherical caps in the unit sphere and of translates of different convex bodies in Euclidean space. These theorems extend the linear programming bounds for packings of spherical caps and of convex bodies through the use of semidefinite programming. We perform explicit computations, obtaining new bounds for pa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete Mathematics

دوره 178  شماره 

صفحات  -

تاریخ انتشار 1998